Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927910

ABSTRACT

RATIONALE: The proteomic responses of hospitalized patients with SARS Co-V-2 infection may provide insight into risk, time course, and mechanisms associated with this infection. We used a high throughput proteomic platform to examine proteins that were differentially expressed relative to the length of hospital stay (LOS). METHOD:26 patients, hospitalized with SARS CoV-2 infection (mean age 48 yrs, 44% women) had blood samples obtained within 72 hours of admission. Initial plasma samples were analyzed from patients who were hospitalized for < 3 days (n=6), < 7days (n=12) and > 7 days (n=8) of LOS and compared to healthy controls (HC, n=8). Samples were analyzed with the modified aptamer-based array (SomaScan) that measures more than 7,000 human proteins representing different molecular pathways and gene families. Differentially regulated proteins with > 1.5 fold change and a false discovery rate of 5% were analyzed using the Ingenuity Pathway Analysis (IPA). Unique protein categories associated with LOS were assessed. RESULT: Compared to HC, differentially expressed proteins were detected among the 3 groups: 461 at < 3 days, 1,635 proteins at < 7 days and 1,738 proteins in >7 days. 407 proteins were common among all hospitalized COVID 19 individuals independent of LOS and 12, 250 and 361 proteins were uniquely present at < 3 days, < 7 days and > 7 days respectively compared to HC. The table below demonstrates the top highly enriched canonical pathway, molecular function and upstream regulator of differentially expressed proteins. The temporal sequence of these protein networks varied with LOS. Representative examples include early responses;platelet membrane glycoprotein GP6 signaling pathway that involves the FcR gamma-chain and the Src kinases linked to platelet aggregation, signaling involved in T cell receptor-mediated IL-2 production (TEC kinase). Less than 7 days include diacylglycerol associated with T cell activation, carnitine palmitoyltransferase associated with mitochondrial beta-oxidation of long chain fatty acids. CXCR4 a receptor for stromal -cell derived factor 1 and associated with COVID-19 prognosis. Late responses after 7 days include pathways involved in remodeling of epithelial adherens junctions. CONCLUSIONS : A high throughput proteomic approach provides insight into the dynamic regulation of protein pathways associated with the progression of SARS-Co-V2 infection. This may provide additional insight into risk and mechanisms associated with outcomes in COVID. (Table Presented).

2.
American Journal of Respiratory and Critical Care Medicine ; 205:2, 2022.
Article in English | English Web of Science | ID: covidwho-1881013
3.
American Journal of Respiratory and Critical Care Medicine ; 205:1, 2022.
Article in English | English Web of Science | ID: covidwho-1880416
SELECTION OF CITATIONS
SEARCH DETAIL